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1. What’s adversarial examples?

• Adversarial examples (对抗样本) are imperceptible (不可察觉) to human but 
can easily fool deep neural networks in the testing stage.

Szegedy et al. (2014) [19]

• As a box-constrained optimization 
problem :

Keep imperceptible

Keep fool model



2. The meaning for studying adversarial examples

• One of the major risks for applying deep neural 
networks in safety-critical environments.

• Help us more deeply understand the neural networks. 
From inspecting adversarial examples, we may gain 
insights on semantic inner levels of neural networks and 
problematic decision boundaries.[34]

Help to increase robustness and performance!



3. Taxonomy (分类) of adversarial attacks

• Adversary’s Knowledge 

1. White-box attacks
2. Black-box attacks

• Adversarial Specificity

1. Targeted attacks
2. Non-targeted attacks

• Attack Frequency

1. One-time attacks
2. Iterative attacks



Adversarial attacks

• L-BFGS Attack

Szegedy et al. firstly introduced adversarial examples against deep neural 
networks in 2014[19]

• Fast Gradient Sign Method (FGSM)

Goodfellow et al. [69]

• Basic Iterative Method (BIM) and Iterative Least-Likely Class Method 
(ILLC) [20] 

• DeepFool [71]
• CPPN EA Fool [83]
• C & W’s Attack [86]
• Zeroth Order Optimization (ZOO) [73]
• Universal Perturbation [74]
• Feature Adversary [76]
• … …



Adversarial attacks



• Network Distillation （蒸馏网络）

• Adversarial training （对抗训练）

• Classifier Robustifying

4. Taxonomy (分类) of Defenses



• Network Distillation （蒸馏网络）

Defenses

Network distillation was originally designed to reduce the size of deep neural 
networks by transferring knowledge from a large networks to a small one [131].

Network distillation extracted knowledge from deep neural networks 
to improve robustness.[126]



• Adversarial training （对抗训练）

Defenses

Training with adversarial examples is one of the countermeasures to make 
neural network more robust [69][127].

Adversarial training increased the robustness of neural networks for one-
step attacks (FGSM) but would not help under iterative attacks (BIM and 
ILLC) [81]

Adversarial trained models are more robust to white-box adversarial 
examples than to the transferred examples. [84]

Ensembling Adversarial Training. [84]



• Classifier Robustifying

Defenses

[128][129] designed robust architectures of deep neural networks to 
prevent adversarial examples.



1. Transferability （转移性）

5. Challenges in future

• Adversarial examples generated against a neural networks can fool the same neural 
networks by different dataset. [19]

• Adversarial examples generated against a neural networks can fool other networks with 
different architectures. [44]

2. The existence of Adversarial examples
• Data incompletion [19, 135, 123, 126]
• Model capability [44, 137, 69, 138, 76, 80]
• No robust model [36, 139, 140]

3. Robustness Evaluation

• Base-line attack
• A methodology for evaluation on the robustness of NN. 
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